400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold
2019/11/27 21:21:20 admin
Remedying a multidrug-resistant (MDR) bacteria wound infection is a major challenge due to the inability of conventional antibiotics to treat such infections against MDR bacteria. Thus, developing wound dressings for wound care, particularly against MDR bacteria, is in huge demand. Here, we present a strategy in designing wound dressings: we use a small molecule (6-aminopenicillanic acid, APA)-coated gold nanoparticles (AuNPs) to inhibit MDR bacteria. We dope the AuNPs into electrospun fibers of poly(epsilon-caprolactone) (PCL)/gelatin to yield materials that guard against wound infection by MDR bacteria. We systematically evaluate the bactericidal activity of the AuNPs and wound-healing capability via the electrospun scaffold. APA-modified AuNPs (Au_APA) exhibit remarkable antibacterial activity even when confronted with MDR bacteria. Meanwhile, Au_APA has outstanding biocompatibility. Moreover, an in vivo bacteria-infected wound-healing experiment indicates that it has a striking ability to remedy a MDR bacteria wound infection. This wound scaffold can assist the wound care for bacterial infections.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享