400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Mechanically-enhanced three-dimensional scaffold with anisotropic morphology for tendon regeneration
2019/11/27 21:22:11 admin
Tissue engineering has showed promising results in restoring diseased tendon tissue functions. Herein, a hybrid three-dimensional (3D) porous scaffold comprising an outer portion rolled from an electrohydrodynamic jet printed poly(epsilon-caprolactone) (PCL) fiber mesh, and an inner portion fabricated from uniaxial stretching of a heat-sealed PCL tube, was developed for tendon tissue engineering (TE) application. The outer portion included three layers of micrometer-scale fibrous bundles (fiber diameter: similar to 25 mu m), with an interconnected spacing and geometric anisotropy along the scaffold length. The inner portion showed orientated micro-ridges/grooves in a parallel direction to that of the outer portion. Owning to the addition of the inner portion, the as-fabricated scaffold exhibited comparable mechanical properties to those of the human patellar tendon in terms of Young's modulus (similar to 227 MPa) and ultimate tensile stress (similar to 50 MPa). Compared to the rolled electrospun fibers, human tenocytes cultured in the tendon scaffolds showed increased cellular metabolism. Furthermore, the 3D tendon scaffold resulted in up-regulated cell alignment, cell elongation and formation of collagen type I. These results demonstrated the potential of mechanically-enhanced 3D fibrous scaffold for applications in tendon TE, with desired cell alignment and functional differentiation.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享