CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium
2019/11/27 21:22:42
admin
Perovskite quantum dots with excellent optical properties and robust durability stand as an appealing and desirable candidate for fluorescence resonance energy transfer (FRET) based fluorescence detection, a powerful technique featuring excellent accuracy and convenience. In this work, a monolithic super hydrophobic polystyrene fiber membrane with CsPbBr3 perovskite quantum dots encapsulated within (CPBQDs/PS FM) was prepared via one-step electrospinning. Coupling CPBQDs with PS matrix, this CPBQDs/PS FM composite exhibits high quantum yields (similar to 91%), narrow half-peak width (similar to 16 nm), nearly 100% fluorescence retention after being exposed to water for 10 days and 79.80% fluorescence retention after 365 nm UV-light (1 mW/cm(2)) illumination for 60 h. Thanks to the outstanding optical property of CPBQDs, an ultralow detection limit of 0.01 ppm was obtained for Rhodamine 6G (R6G) detection, with the FRET efficiency calculated to be 18.80% in 1 ppm R6G aqueous solution. Electrospun as well-designed fiber membranes, CPBQDs/PS FM composite also possesses good tailorability and recyclability, showing exciting potential for future implementation into practical applications.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复