Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers
2019/11/27 21:34:04
admin
Coaxial nanofibers with poly (styrene-block-isoprene) (PS-b-PI)/magnetite nanoparticles as core and silica as shell are fabricated using electrospinning. ([1-4]) Thermally stable silica helps to anneal the fibers above the glass transition temperature of PS-b-PI and form ordered nanocomposite morphologies. Monodisperse magnetite nanoparticles (NPs; 4nm) are synthesized and surface coated with oleic acid to provide marginal selectivity towards an isoprene domain. When 4 wt% nanoparticles are added to symmetric PS-b-PI, transmission electron microscopy (TEM) images of microtomed electrospun fibers reveal that NPs are uniformly dispersed only in the PI domain, and that the confined lamellar assembly in the form of alternate concentric rings of PS and PI is preserved. For 10 wt% NPs, a morphology transition is seen from concentric rings to a co-continuous phase with NPs again uniformly dispersed in the PI domains. No aggregates or loss of PI selectivity is found in spite of interparticle attraction. Magnetic properties are measured using a superconducting quantum interference device (SQUID) magnetometer and all nanocomposite fiber samples exhibit superparamagnetic behavior.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复