400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Sub-nanomolar sensing of ionic mercury with polymeric electrospun nanofibers
2019/11/27 21:34:08 admin
Ethyl cellulose (EC) based electrospun nanofibers were exploited for sub-nanomolar level optical chemical sensing of ionic mercury. An azomethine ionophore was used as Hg (I) and Hg (II) sensing material. Ethyl cellulose nanofibers with varying amounts of the ionic liquid; 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) were prepared and characterized. The nanofibers were fabricated by electrospinning technique. The offered chemosensor allow determination of mercury ions in a large linear working range between 1.0 x 10(-10) and 1.0 x 10(-4) mol L-1. Limit of detection was found to be 0.07 nM which makes this technique alternative to cold-vapor atomic absorption spectrometry (CV-AAS), flame emission methods and to inductively coupled plasma-mass spectrometry (ICP-MS). \ The electrospun nanofibers exhibited excellent sensitivity for Hg (II) with respect to the continuous thin films prepared with same composition. The observed high sensitivity can be attributed to the high surface area of the nanofibrous materials and enhanced diffusibility of the mercury ions to the ionophore. (C) 2012 Elsevier B.V. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享