400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Facile synthesis of core/shell ZnO/ZnS nanofibers by electrospinning and gas-phase sulfidation for biosensor applications
2019/11/27 21:40:31 admin
This study describes a new method of passivating ZnO nanofiber-based devices with a ZnS layer. This one-step process was carried out in H2S gas at room temperature, and resulted in the formation of core/shell ZnO/ZnS nanofibers. This study presents the structural, optical and electrical properties of ZnO/ZnS nanofibers formed by a 2 nm ZnS sphalerite crystal shell covering a 5 nm ZnO wurtzite crystal core. The passivation process prevented free carriers from capture by oxygen molecules and significantly reduced the impact of O-2 on nanostructure conductivity. The conductivity of the nanofibers was increased by three orders of magnitude after the sulfidation, the photoresponse time was reduced from 1500 s to 30 s, and the cathodoluminescence intensity increased with the sulfidation time thanks to the removal of ZnO surface defects by passivation. The ZnO/ZnS nanofibers were stable in water for over 30 days, and in phosphate buffers of acidic, neutral and alkaline pH for over 3 days. The by-products of the passivation process did not affect the conductivity of the devices. The potential of ZnO/ZnS nanofibers for protein biosensing is demonstrated using biotin and streptavidin as a model system. The presented ZnS shell preparation method can facilitate the construction of future sensors and protects the ZnO surface from dissolving in a biological environment.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享