400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Tailoring the supercapacitance of Mn2O3 nanofibers by nanocompositing with spinel-ZnMn2O4
2019/11/27 21:42:26 admin
Mn2O3 is a pseudocapacitive material and a valuable member of the MnOx family with a theoretical specific capacitance of similar to 600 Fg(-1). Despite its good material properties, low electronic conductivity (10(-5) Scm(-1)) limits their usage in supercapacitor industries especially in high rate applications. To improve the material properties, Mn2O3 (NFs) composited with ZnMn2O4 (ZMO) were synthesised using a cost-effective electrospinning method and the resultant nanofibers were characterised by larger surface active reaction sites and enhanced charge-transfer kinetics. Phase fraction of ZMO in Mn2O3 NFs, for getting maximumspecific capacitance was optimised as 1 wt%. About 98% of the capacitance (82 Fg(-1)) was retained after 3000 cycles at a higher current density of 20 Ag-1. Mn2O3 NFs and their composites are susceptible to electrochemical activation during charge-discharge cycles and cycling-protocol for maximum specific capacitance was found out. Nanofibers and their composites synthesised via electrospinning gives substantial hope in fiber based supercapacitor technology. (C) 2017 Published by Elsevier Ltd.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享