400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Cellular Response to Cyclic Compression of Tissue Engineered Intervertebral Disk Constructs Composed of Electrospun Polycaprolactone
2019/11/27 21:43:08 admin
There is lack of investigation capturing the complex mechanical interaction of tissue-engineered intervertebral disk (IVD) constructs in physiologically relevant environmental conditions. In this study, mechanical characterization of anisotropic electrospinning (ES) substrates made of polycaprolactone (PCL) was carried out in wet and dry conditions and viability of human bone marrow derived mesenchymal stem cells (hMSCs) seeded within double layers of ES PCL were also studied. Cyclic compression of IVD-like constructs composed of an agarose core confined by ES PCL double layers was implemented using a bioreactor and the cellular response to the mechanical stimulation was evaluated. Tensile tests showed decrease of elastic modulus of ES PCL as the angle of stretching increased, and at 60 deg stretching angle in wet, the maximum ultimate tensile strength (UTS) was observed. Based on the configuration of IVD-like constructs, the calculated circumferential stress experienced by the ES PCL double layers was 40 times of the vertical compressive stress. Confined compression of IVD-like constructs at 5% and 10% displacement dramatically reduced cell viability, particularly at 10%, although cell presence in small and isolated area can still be observed after mechanical conditioning. Hence, material mechanical properties of tissue-engineered scaffolds, composed of fibril structure of polymer with low melting point, are affected by the testing condition. Circumferential stress induced by axial compressive stimulation, conveyed to the ES PCL double layer wrapped around an agarose core, can affect the viability of cells seeded at the interface, depending on the mechanical configuration and magnitude of the load.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享