400-8910-119
首页 > 文献资料 > ES-Bank > 详情
The Effect of Laminin Surface Modification of Electrospun Silica Nanofiber Substrate on Neuronal Tissue Engineering
2019/11/27 21:43:18 admin
In this study, we first synthesized a slow-degrading silica nanofiber (SNF2) through an electrospun solution with an optimized tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP) ratio. Then, laminin-modified SNF2, namely SNF2-AP-S-L, was obtained through a series of chemical reactions to attach the extracellular matrix protein, laminin, to its surface. The SNF2-AP-S-L substrate was characterized by a combination of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) spectroscopy, nitrogen adsorption/desorption isotherms, and contact angle measurements. The results of further functional assays show that this substrate is a biocompatible, bioactive and biodegradable scaffold with good structural integrity that persisted beyond 18 days. Moreover, a synergistic effect of sustained structure support and prolonged biochemical stimulation for cell differentiation on SNF2-AP-S-L was found when neuron-like PC12 cells were seeded onto its surface. Specifically, neurite extensions on the covalently modified SNF2-AP-S-L were significantly longer than those observed on unmodified SNF and SNF subjected to physical adsorption of laminin. Together, these results indicate that the SNF2-AP-S-L substrate prepared in this study is a promising 3D biocompatible substrate capable of sustaining longer neuronal growth for tissue-engineering applications.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享