Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures
        
        
            2019/11/27 21:43:37
            admin
        
        
        
            To develop tissue engineering scaffolds that possess similar morphological structures to natural extracellular matrices (ECMs) is a major technological challenge. Herein, the feasibility of utilizing polycaprolactone (PCL) as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional (3D) scaffolds has been demonstrated. The obtained 3D scaffolds are soft while elastic, and they possess interconnected and hierarchically structured pores with sizes in the range from sub-microns to hundreds of microns; hence, they are morphologically similar to natural ECMs thus well suited for cell functions and tissue formation. It is envisioned that various thermoplastic polymers could be fabricated into 3D nanofibrous scaffolds/structures by first making blend nanofibers with PCL followed by processing via the thermally induced (nanofiber) self-agglomeration (TISA) method and finally being thermally stabilized, and the resulting electrospun 3D nanofibrous scaffolds/structures might to be useful for a variety of applications (particularly those related to tissue engineering).
        
        
        
                
                    
                    0
                
                
                     
                
         
        
        
        
            
        
    
        网友评论
        请遵循相关法律法规,理性发言
    
    
    
    
    查看更多回复