400-8910-119
首页 > 文献资料 > ES-Bank > 详情
An in vitro study of non-aligned or aligned electrospun poly(methyl methacrylate) nanofibers as primary rat astrocytes-loading scaffold
2019/11/27 21:43:38 admin
After spinal cord injury (SCI), functional regeneration of neurites is hard to achieve due to the existence of glial scar, meanwhile astrocytes are believed important for post injury neuroregeneration, therefore how to handle the contradictory roles of astrocytes remains a problem for better neurogenesis. In this report, aligned electrospun poly(methyl methacrylate) (PMMA) nanofibers were assessed as an astrocytes-loading scaffold in vitro. We found that cell adherence and cell expansion of astrocytes could be supported by PMMA nanofibers, which topographic features could obviously influence the growth manner of astrocytes, and cells on aligned nanofibers finally formed longer and highly aligned processes along the axis of substrate fibers compared with cells cultured on film and non-aligned nanofibers. Regarding the relationship between astrocytes and substratum nanofibers, different topographic feature of substrate nanofibers showed varying degree of impact on cell expansion. On non-aligned nanofibers astrocytes expanded along the orientation of nanofibers early, while on aligned nanofibers astrocytes complied with the cues of nanofibers gradually with time. The results strengthen the rationale that aligned nanofibers could serve as the candidate of implantable scaffold after SCI, and it may relieve the stress of proliferated astrocytes by manipulating the growth pattern of astrocytes through its topographic features.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享