400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Novel poly(epsilon-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering
2019/11/27 21:43:51 admin
Poly(epsilon-caprolactone) (PCL) is a hydrophobic and cytocompatible aliphatic polyester that has been used to produce PCL-based nanofibrous for both wound healing and tissue repair. However, the high hydrophobicity and low water adsorptive have been challenges for developing PCL-based materials for use in tissue engineering field. Here, we report a new polymer (a hydrophilic amino-functionalized tannin (TN)) that is associated with PCL for developing PCL-TN blends at different PCL:TN weight ratios (100:0, 95:5, 85:15 and 78:22). PCL:TN ratio may be tuned to modulate hydrophilicity and cytocompatibility of the nanofibers. The neutralization step and surface wettability played an important role in the attachment of human adipose-derived stem cells (ADSC cells) on PCL-TN membranes. Also, fluorescence images confirmed great proliferation of ADSC cells on the PCL-TN electrospun surfaces. Yet, neutralized PCL-TN nanofibers promoted bactericidal activity against Pseudomonas aeruginosa. These membranes have potential to be used as scaffolds for tissue engineering purposes. (C) 2018 Elsevier Inc. All rights reserved.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享