400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Enhanced photoluminescence properties of electrospun Dy3+-doped ZnO nanofibres for white lighting devices
2019/11/27 21:44:24 admin
Dy3+-doped ZnO nanofibres with diameters from 200 to 500nm were made using an electrospinning technique. The as-fabricated amorphous nanofibres resulted in good crystalline continuous nanofibres through calcination. Dy3+-doped ZnO nanofibres were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) light spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). XRD showed the well defined peaks of ZnO. UV-vis spectra showed a good absorption band at 360nm. FTIR spectra showed a Zn-O stretching vibration confirming the presence of ZnO. Photoluminescence spectra of Dy3+-doped ZnO nanofibres showed an emission peak in the visible region that was free from any ZnO defect emission. Emissions at 480nm and 575nm in the Dy3+-doped ZnO nanofibres were the characteristic peaks of dopant Dy3+ and implied efficient energy transfer from host to dopant. Luminescence intensity was found to be increased with increasing doping concentration and reduction in nanofibre diameter. Colour coordinates were calculated from photometric characterizations, which resembled the properties for warm white lighting devices.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享