Controlling the surface structure of electrospun fibers: Effect on endothelial cells and blood coagulation
2019/11/27 21:44:26
admin
The influence of nano- or micron-sized structures on polymer films as well as the impact of fiber diameter of electrospun membranes on endothelial cell (EC) and blood response has been studied for vascular tissue engineering applications. However, the influence of surface structures on micronsized fibers on endothelial cells and blood interaction is currently not known. In this work, electrospun membranes with distinct fiber surface structures were designed to study their influence on the endothelial cell viability and thrombogenicity. The thermodynamically derived Hansen-solubility-parameters model accurately predicted the formation of solvent dependent fiber surface structured poly(caprolactone) membranes. The electrospun membranes composed of microfibers (MF) or structured MF were of similar fiber diameter, macroscopic roughness, wettability, and elastic modulus. In vitro evaluation with ECs demonstrated that cell proliferation and morphology were not affected by the fiber surface structure. Similarly, investigating the blood response to the fiber meshes showed comparable fibrin network formation and platelet activation on MF and structured MF. Even though the presented results provide evidence that surface structures on MF appear neither to affect EC viability nor blood coagulation, they shed light on the complexity and challenges when studying biology-material interactions. They thereby contribute to the understanding of EC and blood-material interaction on electrospun membranes. Published by the AVS.

0
网友评论
请遵循相关法律法规,理性发言
查看更多回复