400-8910-119
首页 > 文献资料 > ES-Bank > 详情
Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity
2019/11/27 21:44:38 admin
The extracellular matrix (ECM), the physiological scaffold for cells in vivo, provides structural support to cells and guaranties tissue integrity. At the same time, however, it represents an extremely complex and finely tuned signaling environment that contributes in regulating tissue homeostasis and repair. ECM can bind, release and activate signaling molecules and also modulate cell reaction to soluble factors. Cell-ECM interactions, as a result, are recognized to be critical for physiological wound healing, and consequently in guiding regeneration. Due to its complexity, mimicking ECM chemistry and architecture appears a straightforward strategy to exploit the benefits of a biologically recognizable and cell-instructive environment. As ECM consists primarily of sub-micrometric fibers, electrospinning, a simple and versatile technique, has attracted the majority efforts aimed at reprocessing of biologically occurring molecules. However, the ability to trigger specific cellular behavior is likely to depend on both the chemical and conformational properties of biological molecules. As a consequence, when ECM macromolecules are electrospun, investigating the effect of processing on their structure, and the extent to which their potential in directing cellular behavior is preserved, appears crucial. In this perspective, this review explores the electrospinning of ECM molecules specifically focusing on the effect of processing on polymer structure and on in vitro or in vivo experiments designed to confirm the maintenance of their instructive role.
相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享