400-8910-119
首页 > 文献资料 > ES-Bank > 详情
A facile method to fabricate propolis enriched biomimetic PVA architectures by co-electrospinning
2020/8/27 17:00:45 admin

This study depicts easy process of propolis by co-electrospinning without using any toxic agent for biomedical applications. To achieve this, polyvinyl alcohol was utilized as co-spinning agent to fabricate biomimetic Propolis/PVA scaffold. Here, whilst PVA was used as a supportive material to accumulate propolis in scaffold, propolis was employed to enrich biologic aspect of scaffold. This strategy overcomes challenges of propolis processing originated from solubility problems and offers easy processability of propolis in order to use in biomedical applications. Electrospun Propolis/PVA scaffolds were crosslinked with glutaraldehyde and drop-cast model was utilized as a control. Formation of porous, bead-free nanofiber architectures was confirmed through surface morphology analysis, while drop-cast model shows non-porous morphology. Wettability results confirmed both crosslinking and integration of propolis into polyvinyl alcohol scaffold moved contact angle to hydrophobic region. Presence and amount of propolis in hybrid scaffolds were validated via absorbance spectrum results. Bioactivity and biocompatibility of propolis-enriched scaffolds were analyzed through protein adsorption capacity. Obtained findings are evidence that electrospinning methodology offers easy and biosafe process of propolis. Electrospun Propolis/PVA exhibits desired properties and could be potentially utilized as scaffold for tissue engineering or as a wound dressing graft in biomedical field. (C) 2020 Elsevier B.V. All rights reserved.

相关推荐
暂无相关推荐
网友评论 请遵循相关法律法规,理性发言
回复
查看更多回复

分享