Membrane technology proved to be the most promising method for water treatment because of functionality, high efficiency, low cost and stability of smart membrane. In this study, novel effective PVDF/rGO/TiO2 nanofiber webs for oil/water separation are produced by incorporation of rGO/TiO(2 )nanoparticles in the electrospun solution. GO is prepared by Brodie's method while rGO/TiO2 is synthesized by the hydrothermal method. The morphology of PVDF/rGO/TiO2 nanofiber is tested by atomic force microscopy (AFM) and optical microscope. Moreover, the mechanical properties, water contact angle, fourier-transform infrared spectroscopy (FTIR), and oil-water separation property of these nanofiber webs are also tested. The results show PVDF/rGO/TiO2 nanofibers with rGO/TiO2 concentration of 3% have uniform diameter and diameter distribution. Additionally, the mean roughness (Ra) shows an increasing trend with rGO/TiO2 concentration from 0% to 20%. The mechanical properties of PVDF/rGO/TiO2 nanofiber webs are affected by the rGO/TiO2 concentration. FTIR results indicate the existence of GO and TiO2 peaks in the nanofiber webs. In addition, from the oil-water removal experiment, it can be observed that PVDF/rGO/TiO2 nanofiber webs with a rGO/TiO2 concentration of 3% has the highest oil removal efficiency at 98.46%. Overall, the hydrophobic PVDF/rGO/TiO2 nanofiber webs turned out to be promising materials for separating oil/water mixture.